เมื่อเวลาผ่านไปค่าของเงินก็เปลี่ยนไปตามปัจจัยที่มากระทบ อัตราเงินเฟ้อเป็นปัจจัยพื้นฐานที่หลีกเลี่ยงไม่ได้ ซึ่งมูลค่าของเงินจะลดลงตามอัตราเงินเฟ้อ
มูลค่าเงินตามเวลา (time value of money) เป็นปัจจัยหนึ่งของการตัดสินใจในการลงทุน โดยมูลค่าของเงินนั้นขึ้นอยู่กับปัจจัย 2 ประการ ได้แก่ ระยะเวลา และอัตราดอกเบี้ย และมูลค่าเงินตามกาลเวลาเกี่ยวข้องกับแนวความคิดพื้นฐานสองกลุ่ม คือ มูลค่าเงินในปัจจุบันและมูลค่าเงินในอนาคต
1. มูลค่าของเงินปัจจุบัน (present value:PV) หมายถึง มูลค่าเงินจำนวนหนึ่งที่ได้รับหรือจ่ายไปในอนาคต ว่ามีมูลค่าเท่าใดในปัจจุบันน ซึ่งหากนำไปลงทุนแล้วได้รับดอกเบี้ยในอัตราหนึ่งจะได้รับเงินรวมเท่ากับเงินจำนวนนั้นในอนาคต
2. มูลค่าเงินในอนาคต(future value:FV) หมายถึง เงินในวันนี้ที่จะมีมูลค่าเพิ่มมากขึ้นในอนาคต นั่นคือ เงินที่มีในวันนี้หากนำไปลงทุน
การคำนวณหามูลค่าเงินปัจจุบันของเงินที่จะได้ร้บในอนาคต สามารถคำนวณได้จากสูตรต่อไปนี้คือ
\[PV=\frac{FV}{(1+i)^{n}}\]
เมื่อ
\(PV\) คือ มูลค่าปัจจุบัน
\(FV\) คือ มูลค่าอนาคต
\(i\) คือ อัตราดอกเบี้ยหรือว่าอัตราผลตอบแทน
\(n\) คือ จำนวนรอบของการคิดดอกเบี้ยหรือว่าจำนวนรอบในการคิดอัตราผลตอบแทน
จะสังเกตเห็นว่าสูตรในการคำนวณมูลค่าของเงินนี้จะเป็นสูตรเดียวกันในการคำนวณหาเงินรวมเมื่อคิดดอกเบี้ยแบบทบต้นแต่เปลี่ยนตัวแปร กล่าวคือ
สูตรในการคำนวณหาเงินรวมเมื่อคิดดอกเบี้ยแบบทบต้นคือ
\[A=P(1+i)^{n}\]
สูตรในการคำนวณเกี่ยวกับมูลค่าของเงินคือ
\[PV=\frac{FV}{(1+i)^{n}}\] หรือถ้าเราจัดสมการนิดหนึ่งจะได้ว่า
\[FV=PV(1+i)^{n}\]
เห็นไหมครับ เขาเปลี่ยนจาก \(A\) ให้เป็น \(FV\) และเปลี่ยนจาก \(P\) เป็น \(PV\) ครับสังเกตดีๆนะคับ
ต่อไปรเรามาดูโจทย์เกี่ยวกับการคำนวณเรื่องมูลค่าเงินกันครับ
1. ในการลงทุนทำธุรกิจชนิดหนึ่งได้ร้บเงิน ณ สิ้นปี จำนวนเงิน 2500 บาท ถ้ากำหนดอัตราผลตอนแทนร้อยละ 10 ต่อปีแบบทบต้น จงคำนวณหาเงินเริ่มต้นในการลงทุน
วิธีทำ ข้อนี้โจทย์ให้หา \(PV\) นั่นเองครับคือเงินลงทุนครั้งแรก จากโจทย์จะได้ \(i=0.10\) และ \(n\) คือจำนวนงวดหรือจำนวนรอบในการคิดอัตราดอกเบี้ยดังนั้น \(n=1\) แทนค่าในสูตรจะได้
\begin{array}{lcl}PV&=&\frac{FV}{(1+i)^{n}}\\&=&\frac{2500}{(1+0.10)^{1}}\\&=&\frac{2500}{1.10}\\&=&2272.73\end{array}
ดังนั้น มูลค่าปัจจุบันของเงินในอนาคตมีค่า 2272.73 บาท
2. ในการลงทุนชนิดหนึ่ง มานะกับมานีลงทุนกับธนาคารเป็นเวลา 3 ปี ซึ่งมีเงื่อนไขในการได้รับเงินแตกต่างกัน ดังนี้
มานะลงทุนกับธนาคาร A เป็นเงิน 100000 บาท เมื่อครบกำหนดได้รับเงินคืนทั้งหมด 140000 บาท ส่วน มานีลงทุนกับธนาคาร B ด้วยเงินจำนวนหนึ่ง ธนาคารให้ดอกเบี้ย 14% ต่อปีแบบทบต้น เมื่อครบเวลาเขาได้รับเงินตอบแทน 150000 อยากทราบว่าถ้าทั้งสองคนเริ่มลงทุนวันเดียวกันใครได้รับผลตอบแทนมากกว่ากันและต่างกันกี่บาท
วิธีทำ มาดูการลงทุนของ มานะ
มานะลงทุนเงินไป 100000 บาท ครบ 3 ปี ได้รับเงินตอบแทนทั้งหมด 140000 บาท แสดงว่ามานะได้กำไรจากการลงทุนเท่ากับ 140000-100000=40000 บาท
มาดูการลงทุนของ มานี
ลงทุนครับ 3 ปี ได้เงิน 150000 บาท จึงได้ว่า \(FV=150000\) และ \(n=3\) ดอกเบี้ยแบบทบต้น 14% ต่อปี นั่นคือ \(i=0.14\) ดังนั้นเราสามารถคำนวณหาเงินเริ่มต้นของการลงทุนของมานีได้หรือก็คือหา \(PV\) นั่นเองครับ จากสูตร
\begin{array}{lcl}PV&=&\frac{FV}{(1+i)^{n}}\\&=&\frac{150000}{(1+0.14)^{n}}\\&=&\frac{150000}{(1.14)^{3}}\\&\approx& \frac{150000}{1.4815}\\&\approx &101249\end{array}
ดังนั้น มานีใช้เงินในการลงทุนตอนเริ่มต้น 101249 บาท
นั่นคือมานีจะได้กำไรจากการลงทุนเป็นเงิน 150000-101249=48751 บาท
คำตอบก็คือ มานีได้รับผลตอบแทนมากว่ามานะอยู่ 48751-40000=8751 บาท
อ่านเพิ่มเติมเกี่ยวกับเรื่องมูลค่าของเงินตามลิงค์ด้านล่างได้ครับ