เมื่อเวลาผ่านไปค่าของเงินก็เปลี่ยนไปตามปัจจัยที่มากระทบ  อัตราเงินเฟ้อเป็นปัจจัยพื้นฐานที่หลีกเลี่ยงไม่ได้  ซึ่งมูลค่าของเงินจะลดลงตามอัตราเงินเฟ้อ

มูลค่าเงินตามเวลา (time value of money) เป็นปัจจัยหนึ่งของการตัดสินใจในการลงทุน โดยมูลค่าของเงินนั้นขึ้นอยู่กับปัจจัย 2  ประการ ได้แก่  ระยะเวลา และอัตราดอกเบี้ย และมูลค่าเงินตามกาลเวลาเกี่ยวข้องกับแนวความคิดพื้นฐานสองกลุ่ม คือ  มูลค่าเงินในปัจจุบันและมูลค่าเงินในอนาคต

1. มูลค่าของเงินปัจจุบัน (present value:PV) หมายถึง มูลค่าเงินจำนวนหนึ่งที่ได้รับหรือจ่ายไปในอนาคต ว่ามีมูลค่าเท่าใดในปัจจุบันน ซึ่งหากนำไปลงทุนแล้วได้รับดอกเบี้ยในอัตราหนึ่งจะได้รับเงินรวมเท่ากับเงินจำนวนนั้นในอนาคต

2. มูลค่าเงินในอนาคต(future value:FV) หมายถึง เงินในวันนี้ที่จะมีมูลค่าเพิ่มมากขึ้นในอนาคต นั่นคือ เงินที่มีในวันนี้หากนำไปลงทุน  

การคำนวณหามูลค่าเงินปัจจุบันของเงินที่จะได้ร้บในอนาคต สามารถคำนวณได้จากสูตรต่อไปนี้คือ

\[PV=\frac{FV}{(1+i)^{n}}\]

เมื่อ

\(PV\) คือ มูลค่าปัจจุบัน

\(FV\) คือ มูลค่าอนาคต

\(i\) คือ อัตราดอกเบี้ยหรือว่าอัตราผลตอบแทน

\(n\) คือ จำนวนรอบของการคิดดอกเบี้ยหรือว่าจำนวนรอบในการคิดอัตราผลตอบแทน

จะสังเกตเห็นว่าสูตรในการคำนวณมูลค่าของเงินนี้จะเป็นสูตรเดียวกันในการคำนวณหาเงินรวมเมื่อคิดดอกเบี้ยแบบทบต้นแต่เปลี่ยนตัวแปร  กล่าวคือ

สูตรในการคำนวณหาเงินรวมเมื่อคิดดอกเบี้ยแบบทบต้นคือ

\[A=P(1+i)^{n}\]

สูตรในการคำนวณเกี่ยวกับมูลค่าของเงินคือ

\[PV=\frac{FV}{(1+i)^{n}}\]   หรือถ้าเราจัดสมการนิดหนึ่งจะได้ว่า

\[FV=PV(1+i)^{n}\]  

เห็นไหมครับ เขาเปลี่ยนจาก \(A\) ให้เป็น \(FV\)   และเปลี่ยนจาก \(P\) เป็น \(PV\)  ครับสังเกตดีๆนะคับ

ต่อไปรเรามาดูโจทย์เกี่ยวกับการคำนวณเรื่องมูลค่าเงินกันครับ

1. ในการลงทุนทำธุรกิจชนิดหนึ่งได้ร้บเงิน ณ  สิ้นปี  จำนวนเงิน 2500 บาท ถ้ากำหนดอัตราผลตอนแทนร้อยละ 10 ต่อปีแบบทบต้น จงคำนวณหาเงินเริ่มต้นในการลงทุน

วิธีทำ  ข้อนี้โจทย์ให้หา  \(PV\) นั่นเองครับคือเงินลงทุนครั้งแรก  จากโจทย์จะได้ \(i=0.10\) และ \(n\) คือจำนวนงวดหรือจำนวนรอบในการคิดอัตราดอกเบี้ยดังนั้น \(n=1\)  แทนค่าในสูตรจะได้

\begin{array}{lcl}PV&=&\frac{FV}{(1+i)^{n}}\\&=&\frac{2500}{(1+0.10)^{1}}\\&=&\frac{2500}{1.10}\\&=&2272.73\end{array}

ดังนั้น มูลค่าปัจจุบันของเงินในอนาคตมีค่า 2272.73 บาท


2. ในการลงทุนชนิดหนึ่ง  มานะกับมานีลงทุนกับธนาคารเป็นเวลา 3 ปี ซึ่งมีเงื่อนไขในการได้รับเงินแตกต่างกัน ดังนี้

มานะลงทุนกับธนาคาร A เป็นเงิน 100000 บาท เมื่อครบกำหนดได้รับเงินคืนทั้งหมด 140000 บาท  ส่วน มานีลงทุนกับธนาคาร B ด้วยเงินจำนวนหนึ่ง ธนาคารให้ดอกเบี้ย 14% ต่อปีแบบทบต้น  เมื่อครบเวลาเขาได้รับเงินตอบแทน 150000 อยากทราบว่าถ้าทั้งสองคนเริ่มลงทุนวันเดียวกันใครได้รับผลตอบแทนมากกว่ากันและต่างกันกี่บาท

วิธีทำ  มาดูการลงทุนของ มานะ

มานะลงทุนเงินไป 100000 บาท ครบ 3 ปี ได้รับเงินตอบแทนทั้งหมด 140000 บาท แสดงว่ามานะได้กำไรจากการลงทุนเท่ากับ 140000-100000=40000 บาท

มาดูการลงทุนของ มานี

ลงทุนครับ 3 ปี ได้เงิน 150000 บาท จึงได้ว่า \(FV=150000\) และ \(n=3\)  ดอกเบี้ยแบบทบต้น 14% ต่อปี นั่นคือ \(i=0.14\)  ดังนั้นเราสามารถคำนวณหาเงินเริ่มต้นของการลงทุนของมานีได้หรือก็คือหา \(PV\) นั่นเองครับ จากสูตร

\begin{array}{lcl}PV&=&\frac{FV}{(1+i)^{n}}\\&=&\frac{150000}{(1+0.14)^{n}}\\&=&\frac{150000}{(1.14)^{3}}\\&\approx& \frac{150000}{1.4815}\\&\approx &101249\end{array}

ดังนั้น มานีใช้เงินในการลงทุนตอนเริ่มต้น 101249 บาท

นั่นคือมานีจะได้กำไรจากการลงทุนเป็นเงิน 150000-101249=48751 บาท

คำตอบก็คือ มานีได้รับผลตอบแทนมากว่ามานะอยู่ 48751-40000=8751 บาท

Pin It