เรื่องลำดับเรขาคณิต เป็นเรื่องที่จะได้เรียนในชั้นม้ธยมศึกษาปีที่ 5 สิ่งที่จะต้องรู้เกี่ยวกับเรื่องนี้หลักๆที่
สำคัญเลยคือ
- นิยามของลำดับเรขาคณิต ว่าลำดับเรขาคณิตนั้นมีลักษณะเป็นอย่างไร มีคุณสมบัติอย่างไรถึงจะเป็นลำดับเรขาคณิตได้
- พจน์ทั่วไปของลำดับเรขาคณิต หรือ \(a_{n}\) อันนี้เป็นสิ่งที่สำคัญมากไม่ว่าจะเป็นลำดับเลขคณิตหรือลำดับเรขาคณิต จำเป็นต้องจำและเข้าใจพจน์ทั่วไปให้ได้
สองสิ่งนี้แหล่ะเป็นสิ่งที่จำเป็นต้องรู้ ต่อไปก็ทำแบบฝึกหัดเพิ่มเติมเยอะๆคับ
นิยามของลำดับเรขาคณิต
ให้ \(a_{1},a_{2},a_{3},...a_{n},...\) เป็นลำดับ จะอธิบายเป็นภาษาแบบภาษาพูดบ้านๆน่ะ ถ้าใช้ภาษาคณิตทางการมากไปเดี๋ยวงง
ลำดับที่ผมกำหนดขึ้นมากข้างต้น มันจะเป็นลำดับเรขาคณิต ก็ต่อเมื่อ \(\frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}=...=\frac{a_{n+1}}{a_n}\)
ก็คือจับพจน์ที่อยู่ข้างหลังหารด้วยพจน์ที่อยู่ติดกันข้างหน้าจะแล้วได้ค่าเท่ากันตลอดลำดับนั้นจะเป็นลำดับเรขาคณิต
ตัวอย่างเช่น
5,10,20,40,80,160,...
ลำดับนี้เป็นลำดับเรขาคณิต เพราะว่า
\(\frac{10}{5}=2\)
\(\frac{20}{10}=2\)
\(\frac{40}{20}=2\)
\(\frac{80}{40}=2\)
\(\frac{160}{80}=2\)
จะเห็นว่าจับพจน์ที่อยู่ข้างหลังหารด้วยพจน์ที่อยู่ติดกันข้างหน้าจะแล้วได้ค่าเท่ากันตลอดคือ 2 เรียกลำดับแบบนี้ว่า ลำดับเรขาคณิต
จากตัวอย่างผลหารที่หารออกมาคือ 2 เจ้าเลขสองนี้เขาเรียกว่า อัตราส่วนร่วม(common ratio)
ซึ่งแทนด้วยค่า r
ดังนั้น เราสามารถค่า r ได้โดยเอาพจน์ที่อยู่ข้างหลังหารด้วยพจน์ที่อยู่ข้างหน้าติดกัน หรือถ้าเขียนให้เป็นภาษาคณิตศาสตร์คือ
\(r=\frac{a_{n+1}}{a_n}\)
1. 5,15,45,... จงหาพจน์ทั่วไป
วิธีทำ จากลำดับที่กำหนดให้เราจะเห็นว่าเป็นลำดับเรขาคณิตและมี
\(r=\frac{15}{5}=3\)
เนื่องจากลำดับนีัเป็นลำดับเรขาคณิต ดังนั้น
\(a_{n}=a_{1}r^{n-1}\) แทนค่า r และ \(a_{1}\) ลงไปเลยครับ
\(a_{n}=5(3)^{n-1} \)
2. \( 1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},...\)
วิธีทำ จากลำดับที่กำหนดให้เป็นลำดับเรขาคณิต
\(r=\frac{-\frac{1}{2}}{1}=-\frac{1}{2}\)
เนื่องจากลำดับที่กำหนดให้เป็นลำดับเรขาคณิต ดังนั้น
\(a_{n}=a_{1}r^{n-1}\) แทนค่า r และ \(a_{1}\) ลงไป
\(a_{n}=1(-\frac{1}{2})^{n-1}\)
\(a_{n}=(-\frac{1}{2})^{n-1}\)
3. กำหนดลำดับ 162,-54,18,... จงหาค่าของ \(a_{7}\)
วิธีทำ เนื่องจากลำดับที่กำหนดให้เป็นลำดับเรขาคณิต
ดังนั้น \(r=-\frac{18}{54}=-\frac{1}{3}\)
พจน์ทั่วไปของลำดับเรขาคณิตคือ
\(a_{n}=a_{1}r^{n-1}\) แทนค่า r และ \(a_{1}\) ลงไป
\(a_{n}=162(-\frac{1}{3})^{n-1}\)
ดังนั้น
\(a_{7}=162(-\frac{1}{3}^{7-1})\)
\(a_{7}=162(-\frac{1}{3}^{6})\)
\(a_{7}=162(\frac{1}{729})\)
\(a_{7}=\frac{162}{729}\)
\(a_{7}=\frac{2}{9}\) Ans
4. 243 เป็นลำดับที่เท่าไรของลำดับ \(1,\sqrt{3},3,...\)
วิธีทำ เนื่องจากลำดับที่กำหนดให้เป็นลำดับเรขาคณิต
โดยที่ \(r=\frac{\sqrt{3}}{1}=\sqrt{3}\)
\(a_{1}=1\)
พจน์ทั่วไปของลำดับเรขาคณิตคือ \(a_{n}=a_{1}r^{n-1}\)
แทนค่า r และ \(a_{1}\) ลงไปในพจน์ทั่วไปเลยครับ จะได้
\(a_{n}=1(\sqrt{3})^{n-1}\)
เขาถามว่า 243 เป็นพจน์ที่เท่าไรของลำดับนี้ ดังนั้น จะได้
\(243=1(\sqrt{3})^{n-1}\)
\(3^{5}=3^{\frac{1}{2}\times (n-1)}\) รากที่สองของสามคือ สามกำลังหนึ่งส่วนสอง
\(3^{5}=3^{\frac{n-1}{2}}\) อย่าลืมนะ 243 เท่ากับ สามยกกำลังห้า
ฐานเท่ากันแล้วคือ 3 ดังนั้นจะได้เลขชี้กำลังเท่ากันคือ
\(5=\frac{n-1}{2}\)
\(5\times 2=n-1\)
\(10+1=n\)
\(n=11\) Ans 243 เป็นพจน์ที่ 11 ของลำดับนี้
5. จงหาว่าลำดับ \(5,5\sqrt{2},10,...,40\) มีจำนวนกี่พจน์
วิธีทำ ข้อนี้ไม่ยาก ข้อสอบในห้องเรียนชอบถามเพราะเป็นการทดสอบความเข้าใจพื้นฐานของความรู้เรื่องลำดับเรขาคณิต
แน่นอนคับลำดับนี้เป็นลำดับเรคณิต โดยมี \(r=\frac{5\sqrt{2}}{5}=\sqrt{2}\) และ \(a_{1}=5\)
พจน์ทั่วไปของลำดับเรขาคณิตคือ \(a_{n}=a_{1}r^{n-1}\)
ข้อนี้เขาต้องการรู้ว่าลำดับมีกี่พจน์ เราก็ต้องไปหาว่า 40 ซึ่งเป็นพจน์สุดท้ายของลำดับนี้เป็นพจน์ที่เท่าไร ก็คือ แทน \(a_{n}=40\) ลงไปในพจน์ทั่วไป จะได้
\(40=5\sqrt{2}^{(n-1)}\)
\(\frac{40}{5}=\sqrt{2}^{(n-1)}\)
\(8=2^{\frac{1}{2}(n-1)}\) รูทสองมีค่าเท่ากับสองยกกำลังหนึ่งส่วนสอง
\(2^{3}=2^{\frac{1}{2}(n-1)}\)
ดังนั้นจะได้
\(3=\frac{1}{2}(n-1)\)
\(3\times 2=n-1\)
\(6=n-1\)
\(6+1=n\)
\(n=7\)
Ans ดังนั้น 40 เป็นพจน์ที่ 7 ของลำดับนี้และเป็นพจน์สุดท้ายด้วยดังนั้นลำดับนี้มี 7 พจน์นั่นเอง
6. ลำดับเรขาคณิตชุดหนึ่ง มีผลบวกและผลคูณของสามพจน์แรกเท่ากับ 6 และ -64 ตามลำดับ จงหาสามพจน์แรกของลำดับนีั
วิธีทำ การทำข้อนี้เราต้องกำหนดพจน์สามพจน์ขึ้นมาก่อนตามที่โจทย์บอกมา
ซึ่งถ้าให้พจน์แรกคือ a พจน์ที่สองต้องเป็น ar และพจน์ที่สามต้องเป็น \(ar^{2}\)
เพราะลำดับเรขาคณิต พจน์ที่สองเกิดจากการเอาพจน์แรกคูณกับค่าอัตราส่วนร่วมซึ่งก็คือค่า r นั่นเอง
พจน์ที่สาม เกิดจากการเอาพจน์ที่สองคูณกับค่า r เหมือนกัน ดังเราจะได้สามพจน์แรกของลำดับในข้อนี้คือ
\(a,ar,ar^{2}\) ทำตามในเงื่อนไขที่โจทย์บอกก่อนคือ
\(a+ar+ar^{2}=6\) สามพจณ์แรกบวกกันเท่ากับ 6
\(a(1+r+r^{2})=6\) ให้เป็นสมการที่ 1 ดึงตัวร่วมออกคือ a ถึงตรงนี้เก็บไว้ก่อนไปดูต่อในเงื่อนไขที่สอง
ที่บอกว่าสามพจน์คูณกันได้ -64 ดังนั้นจะได้
\(a\times ar \times ar^{2}=-64\) คูณกันต่อจะได้
\(a^{3}r^{3}=-64\)
\((ar)^{3}=(-4)^{3}\)
ดังนั้นเราจะได้
\(ar=-4\)
\(a=-\frac{4}{r}\) ให้เป็นสมการที่ 2 เอาค่า a ที่ได้นี้ไปแทนในสมการที่ 1 เลยนะจะได้
\(-\frac{4}{r}(1+r+r^{2})=6\) บรรทัดต่อไปเอา r คูณเข้าทั้งสองข้างของสมการจะได้
\(r\times -\frac{4}{r}(1+r+r^{2})=6\times r \)
\(-4(1+r+r^{2})=6r\)
\(-4-4r-4r^{2}=6r\)
\(-4r^{2}-4r-4-6r=0\)
\(-4r^{2}-10r-4=0\) เอาลบหนึ่งคูณเข้า
\(4r^{2}+10r+4=0\) เอาสองหารตลอดได้
\(2r^{2}+5r+2=0\)
\((2r+1)(r+2)=0\)
จะได้
\(r=-2 ,r=-\frac{1}{2}\)
จะเห็นว่าตอนนี้เราได้ค่า r แล้ว นำค่า r นี้ไปแทนค่าในสมการที่ 2 จะได้
เมื่อ r=-2 จะได้ค่า a คือ
\(a=-\frac{4}{-2}=2\)
\(a=2\)
เมื่อ \(r=-\frac{1}{2}\) จะได้ a คือ
\(a=\frac{-4}{-\frac{1}{2}}\)
\(a=-4\times -2\)
\(a=8\)
ข้อนี้โจทย์ถามหาสามพจน์แรกของลำดับ ต้องแบ่งตอบเป็น 2 กรณีเนื่องจาก มี r สองค่า
กรณีที่ 1 เมื่อ r=-2 จะได้ a=2 ดังนั้นลำดับที่ได้คือ
\(a,ar,ar^{2}\)
\(2,(2)(-2),2(-2)^{2}\)
\(2,-4,8\)
กรณีที่ 2 เมื่อ \(r=-\frac{1}{2}\) จะได้ a=8 ดังนั้นลำดับที่ได้คือ
\(8,-4,2\)
เสร็จแล้วครับข้อนี้ข้อสอบออกแบบนี้เยอะ ส่วนมาเป็นข้อเขียนด้วย
7. เด็ก 3 คนมีอายุ 1 ,5 และ 13 ปี จงหาว่าอีกกี่ปีอายุของเด็กทั้งสามจึงจะเรียงกันเป็นลำดับเรขาคณิต
วิธีทำ สมมติให้เวลาผ่านไป x ปีแล้วทำให้อายุของเด็กสามคนนี้เรียงกันเป็นลำดับเรขาคณิต ดังนั้นเราจะได้อายุเมื่อผ่านไป x ปีของเด็กแต่ละคนคือ
1+x,5+x,13+x
ลำดับนี้เป็นลำดับเรขาคณิตดังนั้นเราจะได้
\(\frac{5+x}{1+x}=\frac{13+x}{5+x}\)
\((5+x)(5+x)=(13+x)(1+x)\)
\(x^{2}+10x+25=x^{2}+14x+13\)
\(4x-12=0\)
\(x=\frac{12}{4}\)
\(x=3\)
Ans อีกสามปีอายุของเด็กทั้งสามจะเรียงกันเป็นลำดับเรขาคณิต
อธิบายมาถึงตรงนี้ไม่รู้ว่าเข้าใจกันหรือเปล่า แต่ก็พยายามเขียนเต็มที่แล้ว เมื่อรู้จักนิยามของลำดับเรขาคณิตแล้ว ต่อไป ก็คือหาพจน์ที่ทั่วของลำดับเรขาคณิตกัน คับ เป็นไฟล์วีดีโอแล้วกันขี้เกียจพิมพ์แล้ว