68.กำหนดให้ \(f(x)=3x+1\) และ \((f\circ g)^{\prime}(x)=3x^{2}+1\) ถ้า \(g(0)=1\) แล้ว \(\displaystyle\int_{0}^{1} g(x) dx\) มีค่าเท่าใด

วิธีทำ ต้องหาฟังก์ชัน \(g\) ให้ได้ก่อนครับ ก็หาจากสิ่งที่โจทย์ให้มาแหละคับเริ่มเลย

\begin{array}{lcl}(f\circ g)^{\prime}(x)&=&3x^{2}+1\\\displaystyle\int (f\circ g)^{\prime}dx&=&\displaystyle\int 3x^{2}+1 dx\\(f\circ g)(x)&=&x^{3}+x+c\\f(g(x))&=&x^{3}+x+c\\3g(x)+1&=&x^{3}+x+c\\g(x)&=&\frac{x^{3}+x+c-1}{3}\\from\quad g(0)=1\\so\\g(0)&=&\frac{c-1}{3}\\1&=&\frac{c-1}{3}\\c&=&4\end{array}

เมื่อเรารู้ว่า \(c=4\) ดังนั้นเราจะได้ว่า

\(g(x)=\frac{x^{3}+x+3}{3}=\frac{x^{3}}{3}+\frac{x}{3}+1\)

เริ่มหาคำตอบกันเลย เราได้หน้าตาของฟังก์ชัน \(g\) แล้ว

\begin{array}{lcl}\displaystyle\int_{0}^{1}g(x) dx&=&\displaystyle\int_{0}^{1}\frac{x^{3}}{3}+\frac{x}{3}+1 dx\\&=&\frac{x^{4}}{12}+\frac{x^{2}}{6}+x|_{0}^{1}\\&=&\frac{1}{12}+\frac{1}{6}+1\\&=&\frac{1+2+12}{12}\\&=&\frac{15}{12}\\&=&\frac{5}{4}\end{array}