• ฝึกทำโจทย์คณิตศาสตร์ (68)

    68.กำหนดให้ \(f(x)=3x+1\) และ \((f\circ g)^{\prime}(x)=3x^{2}+1\) ถ้า \(g(0)=1\) แล้ว \(\displaystyle\int_{0}^{1} g(x) dx\) มีค่าเท่าใด

    วิธีทำ ต้องหาฟังก์ชัน \(g\) ให้ได้ก่อนครับ ก็หาจากสิ่งที่โจทย์ให้มาแหละคับเริ่มเลย

    \begin{array}{lcl}(f\circ g)^{\prime}(x)&=&3x^{2}+1\\\displaystyle\int (f\circ g)^{\prime}dx&=&\displaystyle\int 3x^{2}+1 dx\\(f\circ g)(x)&=&x^{3}+x+c\\f(g(x))&=&x^{3}+x+c\\3g(x)+1&=&x^{3}+x+c\\g(x)&=&\frac{x^{3}+x+c-1}{3}\\from\quad g(0)=1\\so\\g(0)&=&\frac{c-1}{3}\\1&=&\frac{c-1}{3}\\c&=&4\end{array}

    เมื่อเรารู้ว่า \(c=4\) ดังนั้นเราจะได้ว่า

    \(g(x)=\frac{x^{3}+x+3}{3}=\frac{x^{3}}{3}+\frac{x}{3}+1\)

    เริ่มหาคำตอบกันเลย เราได้หน้าตาของฟังก์ชัน \(g\) แล้ว

    \begin{array}{lcl}\displaystyle\int_{0}^{1}g(x) dx&=&\displaystyle\int_{0}^{1}\frac{x^{3}}{3}+\frac{x}{3}+1 dx\\&=&\frac{x^{4}}{12}+\frac{x^{2}}{6}+x|_{0}^{1}\\&=&\frac{1}{12}+\frac{1}{6}+1\\&=&\frac{1+2+12}{12}\\&=&\frac{15}{12}\\&=&\frac{5}{4}\end{array}

  • ฝึกทำโจทย์คณิตศาสตร์ (71)

    71.กำหนดให้ \(f\) เป็นฟังก์ชันพหุนามกำลังสาม ซึ่ง \(f(0)=1=f(1)\) ถ้า \(f^{\prime}(0)=1\) และ\(\displaystyle_{-1}^{1} f(x)dx=6\) แล้ว \(f(-1)\) มีค่าเท่ากับข้อใดต่อไปนี้

    1. -7
    2. -1
    3. 13
    4. 15

    วิธีทำ  ขั้นตอนแรกเราต้องกำหนดให้พหุนามกำลังสามขึ้นมาก่อนก็คือ

    \[f(x)=ax^{3}+bx^{2}+cx+d\]

    เมื่อ \(a,b,c,d\) คือค่าคงตัว

    ต่อไปเราก็หาค่าคงตัวก็คือหาค่า \(a,b,c,d\) ก็หาจากสิ่งที่โจทย์ให้มานั่นแหละไม่ยากมากเริ่มเลย

    \begin{array}{lcl}f(x)&=&ax^{3}+bx^{2}+cx+d\\f^{\prime}(x)&=&3ax^{2}+2bx+c\\f^{\prime}(0)=1\\so\\f^{\prime}(0)&=&0+0+c\\1&=&c\\\color{red}{c}&=&1\end{array}

    ต่อไปหาค่า \(d\)

    \begin{array}{lcl}f(x)&=&ax^{3}+bx^{2}+cx+d\\f(0)=1\\so\\f(0)&=&0+0+0+d\\1&=&d\\\color{green}{d}&=&1\end{array}

    ต่อไปหา \(a,b\) ต่อไปอีก

    \begin{array}{lcl}f(x)&=&ax^{3}+bx^{2}+cx+d\\f(1)=1\\so\\f(1)&=&a+b+c+d\\c=1,d=1\\so\\f(1)&=&a+b+1+1\\1&=&a+b+2\\\color{blue}{a+b}&=&-1\end{array}

    หา \(b\) ต่ออีก

    \begin{array}{lcl}\displaystyle\int_{-1}^{1}f(x)dx&=&6\\\displaystyle\int_{-1}^{1}ax^{3}+bx^{2}+cx+d \quad dx&=&6\\\displaystyle\int_{-1}^{1}ax^{3}+bx^{2}+cx+d\quad dx&=&6\\\displaystyle\int_{-1}^{1}ax^{3}+bx^{2}+x+1\quad dx&=&6\\\frac{ax^{4}}{4}+\frac{bx^{3}}{3}+\frac{x^{2}}{2}+x\quad |_{-1}^{1} &=&6\\\left(\frac{a}{4}+\frac{b}{3}+\frac{1}{2}+1\right)-\left(\frac{a}{4}-\frac{b}{3}+\frac{1}{2}-1\right)&=&6\\\frac{2b}{3}+2&=&6\\b&=&\frac{12}{2}\\b&=&6\end{array}

    จาก \(a+b=-1\) และ\(b=6\) ดังนั้นจะได้ \(a+6=-1\) จึงได้ว่า \(a=-7\)  

    ณ ตอนนี้เราได้ว่า

    \(a=-7\)

    \(b=6\)

    \(c=1\)

    \(d=1\)

    นั่นคือ

    \begin{array}{lcl}f(x)&=&ax^{3}+bx^{2}+cx+d\\f(x)&=&-7x^{3}+6x^{2}+x+1\\so\\f(-1)&=&7+6-1+1\\f(-1)&=&13\quad\underline{Ans}\end{array}

  • อินทิเกรต

    วันนี้ผมจะทำการเฉลยแบบฝึกหัดปริพันธ์ไม่จำกัดเขตหรือว่าอินทิเกรตไม่จำกัดเขตนั่นเองครับให้ผู้ที่สนใจได้ดู ได้ศึกษาอ่านเองเพื่อเป็นความรู้พื้นฐาน สำหรับคนที่ไม่มีเงินเรียนพิเศษ จะได้มีเฉลยไว้ดู  สามารถอ่านและศึกษา แบบฝึกหัดพวกนี้เพิ่มเติมได้จากหนังสือคณิตศาสตร์ของ สสวท. และหนังสืออื่นๆที่เกี่ยวกับข้อง จะได้มีความรู้ที่กว้างและทำข้อสอบได้ต่อไป มาดูแบบฝึกหัดเกี่ยวกับการหาปริพันธ์ไม่จำกัดเขตกันเลยครับ

    1. จงหาปริพันธ์ไม่จำกัดเขตต่อไปนี้

    1) \(\int (x^{4}+3x^{2}+5x)dx\)

    วิธีทำ

    \begin{array}{lcl}\int (x^{4}+3x^{2}+5x)dx&=&\int x^{4}dx+\int 3x^{2}dx+\int 5xdx\\&=&\int x^{4}dx+3\int x^{2}dx+5\int xdx\\&=&\frac{x^{5}}{5}+x^{3}+\frac{5x^{2}}{2}+c\end{array}


    2)\(\int (2x^{3}-3x^{2}+6-2x^{-2})dx\)

    วิธีทำ 

    \begin{array}{lcl}\int (2x^{3}-3x^{2}+6-2x^{-2})dx&=&\int 2x^{3}dx-\int3x^{2}dx+6\int dx-\int 2x^{-2}dx\\&=&2\int x^{3}dx-3\int x^{2}dx+6\int dx-2\int x^{-2}dx\\&=&\frac{x^{4}}{2}-x^{3}+6x+\frac{2}{x}+c\end{array}


    3) \(\int (x^{10}-\frac{1}{x^{3}})dx\)

    วิธีทำ

    \begin{array}{lcl}\int (x^{10}-\frac{1}{x^{3}})dx&=&\int x^{10}dx-\int x^{-3}dx\\&=&\frac{x^{11}}{11}+\frac{1}{2x^{2}}+c\end{array}


    4)\(\int (\frac{1}{x^{2}}+\frac{2}{x^{4}})dx\)

    วิธีทำ

    \begin{array}{lcl}\int (\frac{1}{x^{2}}+\frac{2}{x^{4}}&=&\int \frac{1}{x^{2}}dx+\int \frac{2}{x^{4}}dx\\&=&\int x^{-2}dx+2\int x^{-4}dx\\&=&-\frac{1}{x}-\frac{2}{3x^{3}}+c\end{array}


    5) \(\int \sqrt{x}dx\)

    วิธีทำ

    \begin{array}{lcl}\int \sqrt{x}dx&=&\int x^{\frac{1}{2}}dx\\&=&\frac{2x^{\frac{3}{2}}}{3}+c\\&=&\frac{2x\sqrt{x}}{3}+c\end{array}


    6) \(\int (x^{\frac{3}{2}}-x^{\frac{2}{3}})dx\)

    วิธีทำ

    \begin{array}{lcl}\int (x^{\frac{3}{2}}-x^{\frac{2}{3}})dx&=&\int x^{\frac{3}{2}}dx-\int x^{\frac{2}{3}}dx\\&=&\frac{2x^{\frac{5}{2}}}{5}-\frac{3x^{\frac{5}{3}}}{5}+c\end{array}

    7. \(\int (\frac{1}{x^{2}}-\frac{1}{2\sqrt{x}})dx\)

    วิธีทำ

    \begin{array}{lcl}\int (\frac{1}{x^{2}}-\frac{1}{2\sqrt{x}})dx&=&\int \frac{1}{x^{2}}dx-\int \frac{1}{2\sqrt{x}}dx\\&=&\int x^{-2}dx-\int\frac{1}{2}x^{\frac{-1}{2}}dx\\&=&-\frac{1}{x}-x^{\frac{1}{2}}+c\\&=&-\frac{1}{x}-\sqrt{x}+c\end{array}

    8)\(\int x^{2}(x-3)dx\)

    วิธีทำ

    \begin{array}{lcl}\int x^{2}(x-3)dx&=&\int x^{3}dx-\int 3x^{2}dx\\&=&\frac{x^{4}}{4}-x^{3}+c\end{array}

    9) \( \int \sqrt{x}(x+1)dx\)

    วิธีทำ

    \begin{array}{lcl}\int\sqrt{x}(x+1)dx&=&\int x^{\frac{1}{2}}(x+1)dx\\&=&\int x^{\frac{3}{2}}dx+\int x^{\frac{1}{2}}dx\\&=&\frac{2x^{\frac{5}{2}}}{5}+\frac{2x^{\frac{3}{2}}}{3}+c\end{array}

    10) \(\int(\frac{x-2}{x^{3}})dx\)

    วิธีทำ

    \begin{array}{lcl}\int(\frac{x-2}{x^{3}})dx&=&\int x^{-2}dx-\in 2x^{-3}dx\\&=&\int x^{-2}dx-2\int x^{-3}dx\\&=&-\frac{1}{x}+\frac{1}{x^{2}}+c\end{array}

    11) \(\int (x^{2}+5x+1)dx\)

    วิธีทำ 

    \begin{array}{lcl} \int (x^{2}+5x+1)dx&=&\int x^{2}dx+\int 5xdx+\int 1dx\\&=&\int x^{2}dx+5\int xdx+\int 1dx\\&=&\int \frac{x^{3}}{3}+\frac{5x^{2}}{2}+x+c\end{array}

    12) \(\int (6\sqrt{x}+15)dx\)

    วิธีทำ

    \begin{array}{lcl}\int (6\sqrt{x}+15)dx&=&\int 6x^{\frac{1}{2}}dx+\int 15dx\\&=&4x^{\frac{3}{2}}+15x+c\\&=&4x\sqrt{x}+15x+c\end{array}

    13) \(\int (x^{3}+5x^{2}+6)dx\)

    วิธีทำ

    \begin{array}{lcl}\int (x^{3}+5x^{2}+6)dx&=&\int x^{3}dx+\int 5x^{2}dx+\int 6dx\\&=&\int x^{3}dx+5\int x^{2}dx+\int 6dx\\&=&\frac{x^{4}}{4}+\frac{5x^{3}}{3}+6x+c\end{array}

    14) \(\int (\frac{6}{\sqrt{x}}+8\sqrt{x})dx\)

    วิธีทำ

    \begin{array}{lcl}\int (\frac{6}{\sqrt{x}}+8\sqrt{x})dx&=&\int 6x^{-\frac{1}{2}}dx+\int 8x^{\frac{1}{2}}dx\\&=&6\int x^{-\frac{1}{2}}dx+8\int x^{\frac{1}{2}}dx\\&=&12x^{\frac{1}{2}}+\frac{16x^{\frac{3}{2}}}{3}+c\\&=&12\sqrt{x}+\frac{16}{3}x\sqrt{x}+c\end{array}


    2. ถ้า \(f^{\prime}(x)=x\) และ \(f(x)=2\) แล้ว จงหา \(f(x)\)

    วิธีทำ  กำหนดให้ \(\frac{dy}{dx}=f^{\prime}(x)=x\)

    จะได้

    \begin{array}{lcl}\int\frac{dy}{dx}dx&=&\int xdx\\y&=&\int xdx\\y&=&\frac{x^{2}}{2}+c\end{array}

    จะได้ \(f(x)=\frac{x^{2}}{2}+c\)

    เนื่องจาก \(f(2)=2\)

    จะได้ 

    \begin{array}{lcl}2&=&\frac{2^{2}}{2}+c\\c&=&0\end{array}

    ดังนั้น \(f(x)=\frac{x^{2}}{2}\)


    3. จงหาสมการเส้นโค้ง \(y=f(x)\)  เมื่อกำหนดความชันของเส้นสัมผัสเส้นโค้งที่จุด \((x,y)\) ใดๆและจุดที่เส้นโค้งผ่านดังนี้

    1) \(\frac{dy}{dx}=x^{2}-3x+2\) จุด \((2,1)\)

    วิธีทำ  เนื่องจากความชันของเส้นสัมผัสโค้งที่จุด \((x,y)\) คือ \(x^{2}-3x+2\)

    นั่นคือ

    \begin{array}{lcl}\frac{dy}{dx}&=&x^{2}-3x+2\end{array}

    จะได้

    \begin{array}{lcl}y&=&\int (x^{2}-3x+2)dx\\y&=&\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x+c\end{array}

    ดังนั้น สมการเส้นโค้งคือ \(y=\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x+c\)

    แต่เส้นโค้งนี้ผ่านจุด \((2,1)\) นั่นคือ เมื่อ \(x=2\) จะได้ \(y=1\)

    แทนค่า \(x\) ด้วย \(2)\) และแทน \(y\) ด้วย \(1\) ในสมการ \(y=\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x+c\) จะได้

    \begin{array}{lcl}1&=&\frac{2^{3}}{3}-\frac{3}{2}(2^{2})+2(2)+c\\c&=&\frac{1}{3}\end{array}

    ดังนั้น สมการเส้นโค้งดังกล่าวคือ \(y=\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x+\frac{1}{3}\)

    2) \(\frac{dy}{dx}=2x^{3}+4x\)  จุด \((0,5)\)

    วิธีทำ เนื่องจากความชันของเส้นสัมผัสโค้งที่จุด \((x,y)\) ใดๆ คือ \(2x^{3}+4x\)

    นั้นคือ \(\frac{dy}{dx}=2x^{3}+4x\)

    จะได้

    \begin{array}{lcl}y&=&\int (2x^{3}+4x)dx\\y&=&\frac{x^{4}}{2}+2x^{2}+c\end{array}

    ดังนั้นสมการเส้นโค้งคือ \(y=\frac{x^{4}}{2}+2x^{2}+c\)

    แต่เส้นโค้งนี้ผ่านจุด \((0,5)\) นั่นคือ เมื่อ \(x=0\) จะได้ \(y=5\)

    แทน \(x\) ด้วย \(0\) และแทน \(y\) ด้วย \(5\) ในสมการ \(y=\frac{x^{4}}{2}+2x^{2}+c\)  จะได้ \(c=5\)

    ดังนั้น สมการเส้นโค้งดังกล่าวคือ \(y=\frac{x^{4}}{2}+2x^{2}+5\)6


    4. จงหาความเร็ว \(v(t)\) และตำแหน่งของวัตถุ \(s(t)\) ขณะเวลา \(t\) ใดๆ เมื่อกำหนดความเร่ง \(a(t)\) และตำแหน่งของวัตถุเมื่อ \(t=0\) ดังนี้

    1) \(a(t)=6-2t,\quad 0\leq t\leq 3,\quad v(0)=5,k\quad s(0)=0\)

    วิธีทำ จาก \(\frac{dv}{dt}=a(t)=6-2t\) เมื่อ \(0\leq t\leq 3\)

    จะได้

    \begin{array}{lcl}\int\frac{dv}{dt}dt&=&\int(6-2t)dt\\v&=&6t-t^{2}+c_{1}\end{array}

    จาก\(v(0)=5\) จะได้ \(c_{1}=5\)

    ดังนั้น ความเร็วขณะเวลา \(t\) ใดๆ คือ \(v(t)=-t^{2}+6t+5\) เมื่อ \(0\leq t\leq 3\)

    จาก \(\frac{ds}{dt}=v(t)=-t^{2}+6t+5\)

    จะได้ \begin{array}{lcl}\int\frac{ds}{dt}dt&=&\int (-t^{2}+6t+5)dt\\s&=&-\frac{t^{3}}{3}+3t^{2}+5t+c_{2}\end{array}

    จาก \(s(0)=0\) จะได้ \(c_{2}=0\)

    ดังนั้น ตำแหน่งของวัตถุขณะเวลา \(t\) ใดๆ คือ \(s(t)=-\frac{t^{3}}{3}+3t^{2}+5t\) เมื่อ \(0\leq t\leq 3\)


    5.โยนวัตถุชิ้นหนึ่งขึ้นไปบนอากาศในแนวดิ่งด้วยความเร็ว 98 เมตร/วินาที

    กำหนดให้ \(g=9.8  เมตร/วินาที^{2}\) จงหา

    1) สมการของการเคลื่อนที่ของวัตถุชิ้นนี้

    วิธีทำ โยนวัตถุขึ้นไปบนอากาศในแนวดิ่ง \(a=-g=-9.8 เมตร/วินาที^{2}\)

    หรือ \(a=\frac{dv}{dt}=-9.8\)

    จะได้ \(\int\frac{dv}{dt}dt=\int -9.8dt\)

    ดังนั้น \(v=-9.8t+c_{1}\)

    โยนวัตถูขึ้นไปบนอากาศในแนวดิ่งด้วยความเร็ว 98 เมตร/วินาที

    นั่นคือ ขณะ \(t=0\) และ \(v=98\)

    จาก \(v=-9.8t+c_{1}\)

    จะได้ \(c_{1}=98\)

    ดังนั้น \(v=-9.8t+98\)

    จาก \(\frac{ds}{dt}=\int (-9.8t+98)dt\)

    ดังนั้น \(s=-4.9t^{2}+98t+c_{2}\)

    เมื่อ \(t=0\) จะได้ \(s=0\) และ \(c_{2}=0\)

    ดังนั้น สมการการเคลื่อนที่ของวัตถุ คือ \(s=-4.9t^{2}+98t\)

    2) วัตถุขึ้นไปสูงสุดเมื่อเวลาผ่านไปนานเท่าใด

    วิธีทำ วัตถุขึ้นสูงสุด เมื่อ \(v=0\)

    จาก \(v=-9.8t+98\)

    จะได้

    \begin{array}{lcl}0&=&-9.8t+98\\t&=&10\end{array}

    ดังนั้น วัตถุขึ้นไปสูงสุดเมื่อเวลาผ่านไป 10 วินาที


    6.จากการทดลองเพาะเชื้อปรสิตในจานเพาะเชื้อ พบว่าอัตราการเปลี่ยนแปลงของจำนวนปรสิต (มีหน่วยเป็นตัวต่อสัปดาห์)  ณ เวลา \(t\) สัปดาห์ คือ \(\frac{d N(t)}{dt}=1200t^{2}-15t\)  จงหาจำนวนปรสิต ณ เวลา \(t\) ใดๆ เมื่อกำหนดให้จำนวนปรสิตเริ่มต้นคือ 600 ตัว

    วิธีทำ  จากโจทย์จะเห็นว่า เขากำหนดอัตราการเปลี่ยนแปลงของจำนวนแบคทีเรีย ณ เวลา \(t\) ใดๆ มาให้ ก็คือกำหนด \(\frac{d N(t)}{dt}\) มาให้  แต่โจทย์ให้เราหาจำนวนแบคที่เรียน ณ เวลา \(t\) ใดๆ นั่นคือเขาให้เราหา \(N(t)\) ในเวลา \(t\) ใดๆ นั่นเอง จึงได้ว่า

    \begin{array}{lcl}N(t)&=&\int\frac{d N(t)}{dt}dt\\&=&\int (1200t^{2}-15t^{4})dt\\&=&\frac{1200t^{3}}{3}-\frac{15t^{5}}{5}+c\\&=&400t^{3}-3t^{5}+c\end{array}

    โจทย์บอกมาอีกว่า จำนวนปรสิต เริ่มต้นคือ 600 ตัว จากตรงนี้เราได้ว่า \(N(0)=600\) เรานำตรงนี้ไปหาค่า \(c\) จะได้

    \begin{array}{lcl}N(t)&=&400t^{3}-3t^{5}+c\\N(0)&=&400(0)^{3}-3(0)^{5}+c\\600&=&c\\c&=&600\end{array}

    ตอนนี้เราได้ค่าของ \(c\) แล้ว นั่นคือจำนวนปรสิต ณ เวลา \(t\) ใดๆคือ

    \(N(t)=400t^{3}-3t^{5}+600\) นั่นเองครับ


    7. อัตราการเปลี่ยนแปลงของการใช้พลังงานในบ้านอยู่อาศัย (มีหน่วยเป็นล้านล้านบีทียูต่อปี) ในปีที่ \(x\) นับจาก ค.ศ. 2000 สามารถประมาณได้ด้วยฟังก์ชัน \(f(x)=2.17x^{2}-9.74x+19.956\)  โดยที่ \(15\leq x\leq 40\) จงหาการใช้พลังงานในบ้านอยู่อาศัยทั้งหมดตั้งแต่ ค.ศ. 2015 ถึง 2040

    วิธีทำ  โจทย์กำหนดอัตราเปลี่ยนแปลงการใช้พลังงานมาให้ ดังนั้นถ้าเราอยากรู้ ฟงก์ชันการใช้พลังงานในบ้าน เราต้องเอาอัตราการเปลี่ยนแปลงการใช้พลังงานภายในบ้านมาอินทิเกรต

    กำหนดให้ \(F(x)\) คือ การใช้พลังงานภายในบ้าน ดังนั้น

    \begin{array}{lcl}F(x)&=&\int f(x) dx\\&=& \int(2.17x^{2}-9.74x+19.956)dx\\&=&\frac{2.17}{3}x^{3}-4.87x^{2}+19.956x+c\end{array}

    โจทย์ให้หาการใช้พลังงานในบ้านอยู่อาศัยทั้งหมดตั้งแต่ ค.ศ.2015 ถึง  2040 นั่นก็คือให้เราหา \(F(40)-F(15)\) นั่นเองคับ  ได้ว่า

    \(F(40)=\frac{2.17}{3}(40)^{3}-4.87(40)^{2}+19.956(40)+c=39,299.57+c\)

    \(F(15)=\frac{2.17}{3}(15)^{3}-4.87(15)^{2}+19.956(15)+c=1,644.84+c\)

    นั่นคือ พลังงานรวมที่บ้านอยู่อาศํยใช้ตั้งแต่ ค.ศ.2015-2040 คือ

    \(F(40)-F(15)=37,654.73\) ล้านล้านบีทียู

  • อินทิเกรต(จำกัดเขต)

    วันนี้ผมจะพาทำแบบฝึกหัดอินทิเกรตแบบจำกัดเขตครับค่อยๆอ่านทำความเข้าใจนะผมจะเฉลยแบบฝึกหัดให้ดูบางข้อ แต่ก่อนที่จะอ่านบทความนี้ให้ไปอ่านการอินทิเกรตแบบไม่จำกัดเขตก่อนและก็ไปดูสูตรเกี่ยวกับการอินทิเกรตก่อนคับ ตามลิงค์นี้เลย อินทิเกรต  สูตรอินทิเกรต ม.6  ปฏิยานุพันธ์,ปริพันธ์,การอินทิเกรต  เอาละต่อไปเราไปดูการอินทิเกรตแบบจำกัดเขตกันเลย ผมจะขอเอาตัวอย่างแบบฝึกหัดอินทิเกรตจำกัดเขตแค่บางข้อมาทำให้ดูเท่านั้นครับ เผื่อใครเรียนในห้องไม่ทัน ไม่มีเงินเรียนพิเศษจะได้มีที่อ่านทบทวนครับ

    จงหาปริพันธ์จำกัดเขตต่อไปนี้ โดยใช้ทฤษฎีบทหลักมูลของแคลคูลัส

    ก่อนอื่นเรามารู้จักทฤษฎีบทหลักมูลของแคลคูลัสก่อนครับ เป็นดังต่อไปนี้

    ทฤฏีบทหลักมูลของแคลคูลัส (The Fundamental Theorem of Calculus)

            กำหนด \(f\) เป็นฟังก์ชันต่อเนื่องบนช่วง \([a,b]\)  ถ้า \(F\) เป็นปฏิยานุพันธ์ของฟังก์ชัน \(f\) แล้ว \(\int_{a}^{b}dx=F(b)-F(a)\)

    หมายเหตุ  จากทฤฏีบทหลักมูลของแคลคูลัส เขียนแทน \(F(b)-F(a)\) ด้วยสัญลักษณ์ \(F(x) |_{a}^{b}\)

                   ถ้า \(F^{\prime}(x)=f(x)\) ดังนั้น \(\int_{a}^{b}dx=F(x)|_{a}^{b}=F(b)-F(a)\)

    1. \(\displaystyle\int_{3}^{4}{(x^{3}+3)}dx\)

    \begin{array}{lcl}\displaystyle\int_{3}^{4}{(x^{3}+3)}dx&=&\left(\frac{x^{4}}{4}+3x\right)\displaystyle\Big| _{3}^{4}\\&=&\left(\frac{256}{4}+12\right)-\left(\frac{81}{4}+9\right)\\&=&\frac{304}{4}-\frac{117}{4}\\&=&\frac{187}{4}\end{array}

     

    2. \(\displaystyle\int_{1}^{3}{(x^{2}-2x+3)}dx\)

    \begin{array}{lcl}\displaystyle\int_{1}^{3}{(x^{2}-2x+3)}dx&=&\left(\frac{x^{3}}{3}-x^{2}+3x\right)\Big|_{1}^{3}\\&=&(9-9+9)-\left(\frac{1}{3}-1+3\right)\\&=&9-\frac{7}{3}\\&=&\frac{20}{3}\end{array}

    3.\(\displaystyle\int_{-1}^{1}{(4x^{3}+2x)}dx\)

    \begin{array}{lcl}\displaystyle\int_{-1}^{1}{(4x^{3}+2x)}dx&=&(x^{4}+x^{2})\Big|_{-1}^{1}\\&=&(1+1)-(1+1)\\&=&0\end{array}

    4.\(\displaystyle\int_{-3}^{-1}{\frac{1}{x^{2}}}\)

    \begin{array}{lcl}\displaystyle\int_{-3}^{-1}{\frac{1}{x^{2}}}&=&\left(-\frac{1}{x}\right)\Big|_{-3}^{-1}\\&=&1-\frac{1}{3}\\&=&\frac{2}{3}\end{array}

    5.\(\displaystyle\int_{2}^{4}{(x^{2}+\frac{3}{x^{3}})}dx\)

    \begin{array}{lcl}\displaystyle\int_{2}^{4}{(x^{2}+\frac{3}{x^{3}})}&=&\left(\frac{x^{3}}{3}-\frac{3}{2x^{2}}\right)\Big|_{2}^{4}\\&=&\left(\frac{64}{3}-\frac{3}{32}\right)-\left(\frac{8}{3}-\frac{3}{8}\right)\\&=&\frac{2039}{96}-\frac{55}{24}\\&=&\frac{1819}{96}\end{array}

    6. \(\displaystyle\int_{-1}^{1}{(-x^{4}+x^{2}-1)}dx\)

    \begin{array}{lcl}\displaystyle\int_{-1}^{1}{(-x^{4}+x^{2}-1)}dx&=&\left(-\frac{x^{5}}{5}+\frac{x^{3}}{3}-x\right)\Big|_{-1}^{1}\\&=&\left(-\frac{1}{5}+\frac{1}{3}-1\right)-\left(\frac{1}{5}-\frac{1}{3}+1\right)\\&=&-\frac{26}{15}\end{array}

    7.\(\displaystyle\int_{0}^{2}{(\frac{x^{3}}{3}+2x)}dx\)

    \begin{array}{lcl}\displaystyle\int_{0}^{2}{(\frac{x^{3}}{3}+2x)}dx&=&\left(\frac{x^{4}+x^{2}}{12}+x^{2}\right)\Big|_{0}^{2}\\&=&\left(\frac{16}{12}+4\right)-0\\&=&\frac{16}{3}\end{array}

    8. ณ เวลา \(t\) ใดๆ รถยนต์คันหนึ่งวิ่งด้วยความเร็ว \(a(t)\) เมตรต่อวินาที โดยที่ \(\displaystyle\int_{0}^{5} a(t) dt=10\) ถ้ารถยนต์คันนี้วิ่งด้วยความเร็วต้น 20 เมตรต่อวินาที จงหาความเร็วของรถยนต์คันนี้ขณะเวลา 5 นาที

    วิธีทำ เรารู้แล้วว่าถ้าอินทิเกรตความเร่ง \(a(t)\) จะได้ความเร็ว \(v(t)\) ดังนั้น จึงได้ว่า

    \begin{array}{lcl}\displaystyle\int_{0}^{5} a(t) dt&=&10\\v(t)\displaystyle\Big|_{0}^{5}&=&10\\v(5)-v(0)&=&10\end{array}

    เนื่องจากรถยนต์คันนี้วิ่งด้วยความเร็วต้น 20 เมตรต่อวินาที นั่นก็คือ \(v(0)=20 m/s\) เอาไปแทนในสมการข้างบนจะได้ว่า

    \begin{array}{lcl}v(5)-v(0)&=&10\\v(5)-20&=&10\\v(5)&=&10+20\\v(5)&=&30\end{array}

    ความเร็วรถยนต์คันนี้ขณะเวลา 5 วินาทีคือ \(30 m/s\)