ค้นหา

ฐานนิยมของข้อมูลที่เป็นอันตรภาคชั้น

ฐานนิยมหรือว่า Mode เป็นค่ากลางของข้อมูลอีกชนิดหนึ่งที่หาได้จากการดูความถึ่ของข้อมูล ถ้าข้อมูลใดมีความถี่สูงสุดหรือว่าปรากฏตัวซ้ำกันหลายครั้งข้อมูลตัวนั้นจะเป็นฐานนิยมของข้อมูลทั้งชุดยกตัวอย่างเช่น

ข้อมูลชุดหนึ่งประกอบด้วย

Ex 1

1,2,3,2,4

จะเห็นว่า 2 นั้นมีความถึ่สูงสุดหรือซ้ำกันมากที่สุดข้อนี้ Mode=2

Ex 2

1,4,2,4,3,7,2

จะเห็นว่า มีข้อมูลที่มีความถี่สูงสุดเท่ากันสองตัวคือ 2 และ 4 ดังนั้นข้อนี้คำตอบมีสองคำตอบคือ Mode=2,4

Ex 3

1,2,5,3,5,5,4,2,6,2,7,1,9,1

จะเห็นว่าข้อมูลที่มีความถี่สูงสุดมีด้วยกัน 3 ตัวคือ 1,2 และ 5 ถ้าเป็นลักษณะนี้ข้อมูลชุดนี้จะไม่มีฐานนิยม  ก็คือถ้ามีตัวที่มีความถี่สูงสุดเกินสองตัวข้อมูลชุดนั้นจะไม่มีฐานนิยม

แต่จากตัวอย่างข้างต้นจะเห็นว่าข้อมูลที่เราหาฐานนิยมนั้นเป็นข้อมูลที่เป็นตัวๆ แต่ถ้าวันนี้เราจะหาฐานนิยมของข้อมูลที่เป็นอันตรภาคชั้น ซึ่งจะมีวิธีการหาดังนี้

1.หาอันตรภาคชั้นที่ Mode ตกอยู่โดยดูจากความถึ่สูงสุดนั่นเอง

2.คำนวนหาผลต่างของความถี่  ระหว่างชั้น Mode กับชั้นที่อยู่ติดกับ Mode ทั้งชั้นบนและชั้นล่าง โดยกำหนดให้

\(d_{1}=  ความถี่ของชั้น Mode - ความถี่ของชั้นต่ำกว่า\)

\(d_{2}=  ความถี่ของชั้น Mode - ความถี่ของชั้นที่สูงกว่า\)

3. คำนวณหาค่า Mode จากสูตร

\(Mode=L+\left(\frac{d_{1}}{d_{1}+d_{2}}\right)I\)

เมื่อ L คือขอบล่างของอันตรภาคชั้น Mode

I คือความกว้างของอันตรภาคชั้น Mode

ไปดูตัวอย่างกันเลยครับ 

ตัวอย่าง จงคำนวณหาฐานนิยมของข้อมูลต่อไปนี้

คะแนน ความถี่
1-10 3
11-20 9
21-30 12
31-40 11

วิธีทำ จากตารางแจกแจงความถี่ข้อมูลเป็นอันตรภาคชั้น จะเห็นว่าอันตรภาคชั้นที่ 3 เป็นชั้นที่มีความถี่สูงสุดดังนั้น Mode ต้องอยู่ในอันตรภาคชั้นที่ 3 นี้ จะได้ว่า

\(L=21-0.5=20.5\)

\(I=30-21+1=10\)

\(d_{1}=12-9=3\)

\(d_{2}=12-11=1\)

แทนค่าลงไปในสูตรเลยครับ

\(Mode=L+\left(\frac{d_{1}}{d_{1}+d_{2}}\right)I\)

\(Mode=20.5+(\frac{3}{3+1})10\)

\(Mode=28\)      Ans  ได้คำตอบแล้วครับ ง่ายๆ หวังว่าจะเป็นประโยชน์สำหรับนักเรียนที่ต้องการหาความรู้  มีปัญหาสอบถามได้ครับ 

ติดต่อเรา wisanu.kkung@gmail.com