ความชันของเส้นโค้ง เราเคยหาความชันของเส้นตรงมาแล้วใช้ไหม ถ้าใครไม่เคยให้ไปอ่านตามลิงค์นี้ก่อนความชันของเส้นตรง ซึ่งจะเห็นว่าการหาความชันของเส้นตรงนั้นเราต้องอาศัยจุดสองจุด ก็คือรู้จุดสองจุดสามารถหาความชันได้ครับ  ดูรูปประกอบ

แต่ถ้าเป็นเส้นโค้ง ดูรูปประกอบนะ  เราจะหาความชันของเส้นโค้งไม่ได้ครับถ้าเราเลือกจุดมาเหมือนกับเส้นตรงแล้วมาหาความชันจะได้ความชันไม่เท่ากันแน่นอนครับ ดังนั้นเราจึงมีวิธีการหาความชันของเส้นโค้งซึ่งจะเริ่มศึกษากันในบทความนี้ครับ

เริ่มกันเลยครับ

กำหนดให้ \(L\) เป็นเส้นตรงที่สัมผัสเส้นโค้งที่จุด \(P\)  ต่อไปจะอาศัยความรู้เรื่องลิมิตในการหาความชันของเส้นตรง \(L\)

กำหนดให้เส้นโค้งเป็นกราฟของ \(y=f(x)\)

\(P(a,b)\)  และ  \(Q(a+h,b+k)\)  เป็นจุดบนเส้นโค้ง โดยที่ \(h\neq 0\)  ดังรูปที่ 3

ลากส่วนของเส้นตรง \(PQ\)  เรียกส่วนของเส้นตรง \(PQ\)  ว่าเส้นตัดกราฟ

ความชันของส่วนของเส้นตรง \(PQ\)  คือ  \(\frac{(b+k)-b}{(a+h)-a}=\frac{k}{h}\)

เนื่องจาก  \(b+k=f(a+h)\)  และ  \(b=f(a)\) 

ดังนั้นความชันของส่วนของเส้นตรง \(PQ\)  คือ  \(\frac{f(a+h)-f(a)}{h}\)

นั่นคือ  \(\frac{h}{k}=\frac{f(a+h)-f(a)}{h}\)

เลือกจุด \(Q_{1}\) บนเส้นโค้งอยู่ระหว่างจุด \(P\) และ  \(Q\)

เลือกจุด \(Q_{2}\)  บนเส้นโค้งอยู่ระหว่างจุด \(P\)  และ \(Q_{1}\)

เลือกจุด \(Q_{3}\)  บนเส้นโค้งอยู่ระหว่างจุด \(P\)  และ \(Q_{2}\)

ทำอย่างนี้เรื่อยๆครับจะเห็นได้ว่าจนถือได้ว่า  \(Q_{n}\)  เกือบทับจุด \(P\)

และเส้นตัดกราฟ \(PQ_{n}\) เกือบจะทับกันเส้นสัมผัสเส้นโค้งที่จุด \(P\)

ดังนั้นความชันของเส้นสัมผัสเส้นโค้งที่จุด \(P\) เท่ากับ \(\displaystyle\lim_{h\to 0}=\frac{f(x+h)-f(x)}{h}\)  (ถ้าหาค่าลิมิตได้)

ความชันของเส้นโค้ง ณ  จุดสัมผัส \(P(x,y)\)  หมายถึงความชันของเส้นสัมผัสเส้นโค้ง ณ  จุด \(P\)

 

ต่อไปเรามาดูโจทย์เกี่ยวกับความชันของเส้นโค้งกันครับ

1. จงหาความชันของเส้นโค้งซึ่งเป็นกราฟของสมการ \(y=\frac{1}{x}\) ที่จุด \((3,1)\)

วิธีทำ  ความชันของเส้นโค้ง ที่จุด \(P(x,y)\) ใดๆ  หาได้จาก

\(\displaystyle\lim_{h\to 0}=\frac{f(x+h)-f(x)}{h}\)  จุด \(P\)  ในข้อนี้มีพิกัดคือ \((3,1)\)  ดังนั้น

\begin{array}{lcl}\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}&=&\displaystyle\lim_{h\to 0}\frac{f(3-h)-f(3)}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{\frac{1}{3+h}-\frac{1}{3}}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{-h}{3(3+h)h}\\&=&\displaystyle\lim_{h\to 0}\frac{-1}{3(3+h)}\\&=&-\frac{1}{9}\end{array}


2. ถ้าเส้นโค้งเป็นกราฟของ \(y=x-2x^{2}\)  จงหา

1)  ความชันของเส้นโค้งที่จุด \(P(1,-1)\)

2)  สมการของเส้นสัมผัสเส้นโค้งที่จุด \(P(1,-1)\)

วิธีทำ ทำข้อ 1)  ก่อนครับทำเหมือนเดิมเลย 

ความชันของเส้นโค้งที่จุด \(P(1,-1)\) หาได้จาก \(\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}\)

\begin{array}{lcl}\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}&=&\displaystyle\lim_{h\to 0}\frac{f(1+h)-f(1)}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{(1+h)-2(1+h)^{2}-(1-(2)1^{2})}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{-3h-2h^{2}}{h}\\&=&\displaystyle\lim_{h\to 0}(-3-2h)\\&=&-3\end{array}

ดังนั้นความชันของเส้นโค้งที่จุด \(P(1,-1)\)  คือ \(-3\)

ต่อไปทำข้อ 2)  ครับ จากข้อหนึ่งเราจะได้ว่าเส้นตรงที่สัมผัสเส้นโค้งมีความชันเท่ากับ \(-3\)  และ จุด \((1,-1)\) เป็นจุดบนเส้นตรงที่สัมผัสเส้นโค้งครับจากที่เรารู้มาแล้วว่าสมการเส้นตรงคือ

\[y-y_{1}=m(x-x_{1})\]

เมื่อ \((x_{1},y_{1})\)  คือจุดบนเส้นตรงในที่นี้ก็คือ  \((1,-1)\) ครับ ดังนั้นสมการเส้นสัมผัสเส้นโค้งหรือว่าสมการเส้นตรงนี้ก็คือ

\[y-(-1)=(-3)(x-1)\]

จัดรูปให้สวยๆหน่อยๆจะได้

\[y+1=3-3x\]

จัดให้สวยขึ้นไปอีกจะได้

\[y=2-3x\]


3. จงหาความชันของเส้นโค้งซึ่งเป็นกราฟของฟังก์ชัน ณ จุดที่กำหนดให้และหาสมการของเส้นสัมผัสเส้นโค้ง ณ จุดนั้น

1) \(y=x^{2}-3x\)  ที่จุด \((3,0)\)

วิธีทำ  ข้อนี้เราจะหาความชันของเส้นโค้งโดยนิยามก่อนนะครับยังไม่ใช้การดิฟครับ เราจะได้ความชันของเส้นโค้งตามนิยามคือ

\begin{array}{lcl}\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}&=&\displaystyle\lim_{h\to 0}\frac{f(3+h)-f(3)}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{(3+h)^{2}-3(3+h)-(3^{2}-3(3))}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{9+6h+h^{2}-9-3h-9+9}{h}\\&=&\displaystyle\lim_{h\to 0}\frac{h^{2}+3h}{h}\\&=&\displaystyle\lim_{h\to 0}(h+3)\\&=&3\end{array}

ต่อไปหาสมการที่สัมผัสเส้นโค้งในจุด \((3,0)\)  ความชันของเส้นโค้งที่เราได้มานั้นก็คือความชันของเส้นตรงที่สัมผัสเส้นโค้งนั่นเอง ดังนั้น เส้นตรงที่สัมผัสเส้นโค้งนี้มีความชันเท่ากับ \(3\) เมื่อเรารู้ความชัน และรู้จุดหนึ่งจุดซึ่งก็คือ \((3,0\) อยู่บนเส้นตรงที่สัมผัสกับเส้นโค้ง เราก็สามารถหาสมการเส้นตรงที่สัมผัสเส้นโค้งนั้นได้ ซึ่งก็คือ

\[y-y_{1}=m(x-x_{1})\]

\[y-0=3(x-3)\]

จัดรูปนิดหนึ่งจะได้

\[y=3x-9\]

ต่อไปผมจะไม่หาความชันของเส้นโค้งตามนิยามแล้วนะครับเพราะว่ามันยาวไป ผมจะใช้วิธีการดิฟเอาครับ พอดิฟเสร็จ สมมติเราต้องการหาความชันของเส้นโค้ง ณ จุด \((a,b)\)  เราก็เอา \(a\)  ไปแทนในตัวแปร x ที่เราดิฟเอาไว้เราก็จะได้ความชันของเส้นโค้งในจุด \((a,b)\)  ครับ ฟังแล้วอาจจะงงเริ่มทำเลยดีกว่าครับ

2) \(y=\frac{6}{x+1}\)  ที่จุด \((2,2)\)

วิธีทำ ดิฟเลยครับ

\begin{array}{lcl}\frac{dy}{dx}&=&\frac{d}{dx}(\frac{6}{x+1})\\&=&\frac{(x+1)(0)-(6)(1+0)}{(x+1)^{2}}\\&=&\frac{-6}{(x+1)^{2}}\end{array}

ดังนั้นความชันของเส้นโค้งที่จุด \((2,2)\)  คือ \(\frac{-6}{(2+1)^{2}}=\frac{-2}{3}\)

ต่อไปหาสมการเส้นสัมผัสเส้นโค้ง เนื่องจากความชันเส้นโค้งก็คือความชันของเส้นตรงที่สมผัสเส้นโค้ง และเส้นตรงนี้ผ่านจุด \((2,2)\)  เส้นตรงที่สัมผัสเส้นโค้งนี้มีสมการเป็น

\[y-y_{1}=m(x-x_{1})\]

\[y-2=-\frac{2}{3}(x-2)\]  

จัดสมการนิดหน่อยจะได้

\[y=-\frac{2}{3}x+\frac{4}{3}+2\]

\[y=-\frac{2}{3}x+\frac{10}{3}\]


2. ถ้ากราฟของ \(y=ax\) ขนานกับเส้นสัมผัสเส้นโค้งซึ่งเป็นกราฟของ \(y=3x^{2}+8\)  ที่จุด \((1,11)\) จงหาค่าของ \(a\)

วิธีทำ  ข้อนี้ไม่ยากครับ เราก็แค่ดิฟสมการเส้นโค้งก็จะได้ความชันของเส้นสัมผัสเส้นโค้ง อย่าลืมนะครับเส้นสัมผัสเส้นโค้งก็คือเส้นตรงนั่นเองครับและเส้นตรงนี้ขนานกับ กราฟของ \(y=ax\)  ซึ่ง \(y=ax\) ก็คือสมการเส้นตรงนั่นเอง ดังนั้นมันขนานกันความชันย่อมเท่ากัน เริ่มดิฟเลย

\begin{array}{lcl}\frac{dy}{dx}&=&6x\end{array}

ดังนั้นความชันของเส้นสัมผัสเส้นโค้งคือ  \(6(x)=6(1)=6\)   

นั่นคือ \(a=6\)  นั่นเอง